This paper addresses a new semantic multi-robot planning problem in uncertain and dynamic environments. Particularly, the environment is occupied with non-cooperative, mobile, uncertain labeled targets. These targets are governed by stochastic dynamics while their current and future positions as well as their semantic labels are uncertain. Our goal is to control mobile sensing robots so that they can accomplish collaborative semantic tasks defined over the uncertain current/future positions and labels of these targets. We express these tasks using Linear Temporal Logic (LTL). We propose a sampling-based approach that explores the robot motion space, the mission specification space, as well as the future configurations of the labeled targets to design optimal paths. These paths are revised online to adapt to uncertain perceptual feedback. To the best of our knowledge, this is the first work that addresses semantic mission planning problems in uncertain and dynamic semantic environments. We provide extensive experiments that demonstrate the efficiency of the proposed method
翻译:本文论述在不确定和动态环境中新的语义多机器人规划问题。 特别是, 环境被不合作、 移动、 不确定的标签目标所占据。 这些具体目标受随机动态调节, 而其当前和今后的位置以及语义标签则不确定。 我们的目标是控制移动遥感机器人, 以便他们完成针对这些具体目标不确定的当前/ 未来位置和标签确定的合作语义任务。 我们用线性时空逻辑(LTL)来表达这些任务。 我们提出一个基于取样的方法, 探索机器人运动空间、 飞行任务规格空间, 以及标签目标的未来配置, 以设计最佳路径。 这些路径经过在线修订, 以适应不确定的感知反馈。 根据我们的知识, 这是在不确定和动态的语义环境中解决语义任务规划问题的第一个工作。 我们提供了广泛的实验, 展示了拟议方法的效率。