The problem of decentralized multi-robot target tracking asks for jointly selecting actions, e.g., motion primitives, for the robots to maximize target tracking performance with local communications. One major challenge for practical implementations is to make target tracking approaches scalable for large-scale problem instances. In this work, we propose a general-purpose learning architecture toward collaborative target tracking at scale, with decentralized communications. Particularly, our learning architecture leverages a graph neural network (GNN) to capture local interactions of the robots and learns decentralized decision-making for the robots. We train the learning model by imitating an expert solution and implement the resulting model for decentralized action selection involving local observations and communications only. We demonstrate the performance of our GNN-based learning approach in a scenario of active target tracking with large networks of robots. The simulation results show our approach nearly matches the tracking performance of the expert algorithm, and yet runs several orders faster with up to 100 robots. Moreover, it slightly outperforms a decentralized greedy algorithm but runs faster (especially with more than 20 robots). The results also exhibit our approach's generalization capability in previously unseen scenarios, e.g., larger environments and larger networks of robots.
翻译:分散式多机器人目标跟踪问题要求共同选择行动,例如运动原始体,使机器人最大限度地利用当地通信进行目标跟踪。实际实施的一个主要挑战是如何使目标跟踪方法能够适用于大规模问题实例。在这项工作中,我们提议了一个通用学习架构,以便以分散式通信进行规模的合作目标跟踪。特别是,我们的学习架构利用一个图形神经网络(GNN)来捕捉机器人的本地互动,并学习机器人的分散式决策。我们通过模仿专家解决方案来培训学习模式,并采用由此产生的分散式行动选择模式,仅涉及当地观测和通信。我们在与大型机器人网络进行主动目标跟踪的情景中展示了基于GNN的学习方法的绩效。模拟结果显示我们的方法几乎与专家算法的跟踪性能相匹配,但以100个机器人的速度跑得更快。此外,它略微超出分散式的贪婪算法,但运行得更快(特别是20多个机器人)。结果还展示了我们的方法在先前看不见的假设情景中的一般化能力,例如,更大的机器人和更大的环境。