Discrete orthogonal matrices have several applications in information technology, such as in coding and cryptography. It is often challenging to generate discrete orthogonal matrices. A common approach widely in use is to discretize continuous orthogonal functions that have been discovered. The need of certain continuous functions is restrictive. To simplify the process while improving the efficiency and flexibility, we present a general method for generating orthogonal matrices directly through the construction of certain even and odd polynomials from a set of distinct positive values, bypassing the need of continuous orthogonal functions. We provide a constructive proof by induction that not only asserts the existence of such polynomials, but also tells how to iteratively construct them. Besides the derivation of the method as simple as a few nested loops, we discuss two well-known discrete transforms, the Discrete Cosine Transform and the Discrete Tchebichef Transform. How they can be achieved using our method with the specific values, and show how to embed them into the transform module of video coding. By the same token, we also show some examples of how to generate new orthogonal matrices from arbitrarily chosen values.


翻译:在信息技术中,解剖或线性矩阵有几个应用,例如编码和加密。生成离散的正向矩阵往往具有挑战性。广泛使用的一个共同方法是分离已发现的连续正向函数。某些连续函数的必要性是限制性的。为了简化过程,同时提高效率和灵活性,我们提出了一个从一组截然不同的正值中直接生成正向矩阵的一般方法,绕过连续正向函数的需要。我们通过感应提供了一个建设性的证明,不仅表明存在这种多向矩阵,而且还说明如何迭代构建这些矩阵。除了像几个嵌套环那样简单的方法外,我们还讨论两个众所周知的离散变换,即共向科松变换和Discrete Tchebichef 变换。如何用我们的方法用特定值实现它们,并显示如何将它们嵌入视频编码的变换模块中。我们所选择的一些任意的矩阵,我们通过同样的方式展示了如何生成新的或新矩阵的示例。

0
下载
关闭预览

相关内容

最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
mSHAP: SHAP Values for Two-Part Models
Arxiv
1+阅读 · 2021年6月16日
Arxiv
6+阅读 · 2018年1月29日
VIP会员
相关资讯
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员