Generative Adversarial Networks (GAN) have shown great promise in tasks like synthetic image generation, image inpainting, style transfer, and anomaly detection. However, generating discrete data is a challenge. This work presents an adversarial training based correlated discrete data (CDD) generation model. It also details an approach for conditional CDD generation. The results of our approach are presented over two datasets; job-seeking candidates skill set (private dataset) and MNIST (public dataset). From quantitative and qualitative analysis of these results, we show that our model performs better as it leverages inherent correlation in the data, than an existing model that overlooks correlation.
翻译:在合成图像生成、图像油漆、风格传输和异常探测等任务中,生成生成的生成自动网络(GAN)显示了巨大的希望。然而,生成离散数据是一项挑战。这项工作展示了一种基于敌对培训的离散相关数据生成模型。它还详细介绍了有条件的CDD生成方法。我们方法的结果通过两个数据集(求职候选人技能集(私人数据集)和MNIST(公共数据集))来展示。根据对这些结果的定量和定性分析,我们显示我们的模型表现更好,因为它利用了数据中固有的相关性,而不是利用现有的忽略相关性的模型。