The performance of the conditional particle filter (CPF) with backward sampling is often impressive even with long data records. Two known exceptions are when the observations are weakly informative and the dynamic model is slowly mixing. These are both present when sampling finely time-discretised continuous-time path integral models, but can occur with hidden Markov models too. Multinomial resampling, which is commonly employed in the (backward sampling) CPF, resamples excessively for weakly informative observations and thereby introduces extra variance. A slowly mixing dynamic model renders the backward sampling step ineffective. We detail two conditional resampling strategies suitable for the weakly informative regime: the so-called `killing' resampling and the systematic resampling with mean partial order. To avoid the degeneracy issue of backward sampling, we introduce a generalisation that involves backward sampling with an auxiliary `bridging' CPF step, which is parameterised by a blocking sequence. We present practical tuning strategies for choosing an appropriate blocking. Our experiments demonstrate that the CPF with a suitable resampling and the developed `bridge backward sampling' can lead to substantial efficiency gains in the weakly informative regime.


翻译:使用后向取样的有条件粒子过滤器(CPF)的性能即使有长期的数据记录,也往往令人印象深刻。有两个已知的例外是,当观测信息不足,动态模型缓慢混合时,这些都存在。当对精细的时间分解连续时间路径集成模型进行取样时,这些都存在,但也可以在隐藏的Markov模型中出现。多向抽取,这通常用于(后向采样)CPF(后向采样)中,对信息不足的观测结果进行过度抽取,从而带来额外的差异。一个缓慢混合的动态模型使后向采样步骤变得无效。我们详细介绍了两种适合低信息化制度的条件性抽取战略:所谓的“杀菌”重新采样和以平均部分顺序系统抽取。为了避免后向采样的退化问题,我们引入了一种概括性的方法,涉及后向采样,用辅助的“压式”缓冲式”缓冲”缓冲式样步骤,用阻塞序列作为参数。我们提出了选择适当阻塞的实用调策略。我们的实验表明,具有适当重新抽查和发达的“后向后向后向取样”的“断式取样”的试验可以导致弱信息系统取得重大效率。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月22日
Arxiv
0+阅读 · 2022年8月19日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员