Conditional randomization tests (CRTs) assess whether a variable $x$ is predictive of another variable $y$, having observed covariates $z$. CRTs require fitting a large number of predictive models, which is often computationally intractable. Existing solutions to reduce the cost of CRTs typically split the dataset into a train and test portion, or rely on heuristics for interactions, both of which lead to a loss in power. We propose the decoupled independence test (DIET), an algorithm that avoids both of these issues by leveraging marginal independence statistics to test conditional independence relationships. DIET tests the marginal independence of two random variables: $F(x \mid z)$ and $F(y \mid z)$ where $F(\cdot \mid z)$ is a conditional cumulative distribution function (CDF). These variables are termed "information residuals." We give sufficient conditions for DIET to achieve finite sample type-1 error control and power greater than the type-1 error rate. We then prove that when using the mutual information between the information residuals as a test statistic, DIET yields the most powerful conditionally valid test. Finally, we show DIET achieves higher power than other tractable CRTs on several synthetic and real benchmarks.
翻译:有条件随机测试( CRTs) 评估一个变量美元是否预测了另一个变量美元,观察了共差美元。 CRTs需要安装大量的预测模型,而这些模型往往难以计算。 降低CRTs成本的现有解决方案通常将数据集分成一个火车和测试部分,或依靠超自然论来进行互动,两者都会导致权力丧失。 我们提议了一种分解的独立测试(DIET),这种算法通过利用边际独立统计来测试有条件的独立关系来避免这两个问题。 DIET测试两个随机变量的边际独立性: $F(x\ mid z) 美元和 $F(y\ mid z) 美元,其中美元(y\ mid z) 是有条件的累积分配功能( CDF)。 这些变量被称为“ 信息剩余量 ” 。 我们给DIET提供了足够的条件, 以达到有限的样本类型1的错误控制和能力大于类型-1错误率。 我们随后证明, 当使用信息剩余部分的相互信息作为最可靠的测试基准时, 我们最终能够显示其它的磁标。