Reconstructing high-resolution flow fields from sparse measurements is a major challenge in fluid dynamics. Existing methods often vectorize the flow by stacking different spatial directions on top of each other, hence overlooking the information encoded in different dimensions. Here, we introduce a tensor-based sensor placement and flow reconstruction method which retains and exploits the inherent multidimensionality of the flow. We derive estimates for the flow reconstruction error, storage requirements and computational cost of our method. We show, with examples, that our tensor-based method is significantly more accurate than similar vectorized methods. Furthermore, the variance of the error is smaller when using our tensor-based method. While the computational cost of our method is comparable to similar vectorized methods, it reduces the storage cost by several orders of magnitude. The reduced storage cost becomes even more pronounced as the dimension of the flow increases. We demonstrate the efficacy of our method on two examples: a chaotic Kolmogorov flow and the in-situ and satellite measurements of the global sea surface temperature.
翻译:从稀少的测量中重建高分辨率流场是流体动态中的一大挑战。 现有方法往往通过将不同的空间方向叠叠在彼此之间,从而忽略不同维度的编码信息,从而将流动量向上转移。 在这里,我们引入了一种基于电压的传感器定位和流量重建方法,这种方法保留并利用了流动的内在多维性。 我们得出了流量重建错误、储存要求和计算方法成本的估计数。 我们用实例表明,我们基于气压的方法比类似的矢量化方法更准确得多。 此外,使用我们基于气压的方法时,错误的差异较小。 虽然我们方法的计算成本与类似的矢量化方法相似,但它将存储成本降低几个数量级。 储量成本的降低随着流量的增加而变得更加明显。 我们用以下两个例子来展示了我们方法的功效:混乱的科尔莫洛流以及全球海面温度的地表和卫星测量。