A pattern $\alpha$ is a string of variables and terminal letters. We say that $\alpha$ matches a word $w$, consisting only of terminal letters, if $w$ can be obtained by replacing the variables of $\alpha$ by terminal words. The matching problem, i.e., deciding whether a given pattern matches a given word, was heavily investigated: it is NP-complete in general, but can be solved efficiently for classes of patterns with restricted structure. If we are interested in what is the minimum Hamming distance between $w$ and any word $u$ obtained by replacing the variables of $\alpha$ by terminal words (so matching under Hamming distance), one can devise efficient algorithms and matching conditional lower bounds for the class of regular patterns (in which no variable occurs twice), as well as for classes of patterns where we allow unbounded repetitions of variables, but restrict the structure of the pattern, i.e., the way the occurrences of different variables can be interleaved. Moreover, under Hamming distance, if a variable occurs more than once and its occurrences can be interleaved arbitrarily with those of other variables, even if each of these occurs just once, the matching problem is intractable. In this paper, we consider the problem of matching patterns with variables under edit distance. We still obtain efficient algorithms and matching conditional lower bounds for the class of regular patterns, but show that the problem becomes, in this case, intractable already for unary patterns, consisting of repeated occurrences of a single variable interleaved with terminals.


翻译:模式 $\ alpha$ 是一系列变量和终端字母。 我们说, $\ alpha$ 符合一个单字, 仅由终端字母组成, 如果能用终端字替换 $\ alpha$ 的变量, 则只能用终端字来获得美元。 匹配问题, 即决定给定模式是否与给定单词匹配, 得到了大量调查: 它一般是NP- 完整的, 但对于结构受限制的模式类别来说, 可以有效解决。 如果我们对什么是最小的宽度距离感兴趣, 在美元和任何美元之间, 仅用终端字取代 $\ alpha$ 的变量, 仅用终端字来替换 $\ alpha$ 的变量( 在哈姆明距离下匹配的单一模式), 就可以设计有效的算法, 并且匹配常规模式类别( 在不出现变量两次的情况下) 的有条件的下较低的下界限, 以及我们允许无限制模式的重复, 结构结构结构的结构, 的发生的方式是 。 此外,, 不同的变量发生的方式, 如果一个变数发生一次不固定的变数发生, 的周期的周期会成为这些变数 的周期 的 的 的周期的 的 的变数 的变数会成为这些变数 的变数 的变数 的变数 的变的变的 。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月8日
Arxiv
12+阅读 · 2021年6月29日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员