Motivated by the success of the serial dictatorship mechanism in social choice settings, we explore its usefulness in tackling various combinatorial optimization problems. We do so by considering an abstract model, in which a set of agents are asked to act in a particular ordering, called the action sequence. Each agent acts in a way that gives her the maximum possible value, given the actions of the agents who preceded her in the action sequence. Our goal is to compute action sequences that yield approximately optimal total value to the agents (a.k.a., social welfare). We assume query access to the value $v_i(S)$ that the agent i gets when she acts after the agents in the ordered set $S$. We establish tight bounds on the social welfare that can be achieved using polynomially many queries. Even though these bounds show a marginally sublinear approximation of optimal social welfare in general, excellent approximations can be obtained when the valuations stem from an underlying combinatorial domain. Indicatively, when the valuations are defined using bipartite matchings, arborescences in directed graphs, and satisfiability of Boolean expressions, simple query-efficient algorithms yield $2$-approximations. We discuss issues related to truthfulness and show how some of our algorithms can be implemented truthfully using VCG-like payments. Finally, we introduce and study the price of serial dictatorship, a notion that provides an optimistic measure of the quality of combinatorial optimization solutions generated by action sequences.


翻译:在社会选择环境中连续独裁机制的成功激励下,我们探索了它对于解决各种组合优化问题的实用性。我们这样做的方法是考虑抽象模式,要求一组代理人在特定顺序下采取行动,称为行动序列。每个代理人的行动方式使她具有最大可能的价值,考虑到在她之前的代理人在行动序列中的行动。我们的目标是计算行动序列,给代理人带来大约最佳的总价值(a.k.a.a.,社会福利)。我们假设人们可以查询代理人在订定的美元定额为美元之后在代理人行事时得到的价值$v_i(S)美元。我们用多面性询问的方式,对社会福利设置了紧紧的界限。尽管这些界限显示了她在她之前的代理人在行动序列中的行动,但当估值是从基本组合域(a.k.a.a.a.a.,社会福利)产生最优化的总价值时,可以取得极好的近的近。我们使用双面匹配、直方向图表中的“透镜”和正比值定值序列中,我们用“BooG.C”的精确度解释,我们用直截面的算法解释,我们最后的准确的算算算算算算算出我们如何进行了价格和真实的准确的排序。

0
下载
关闭预览

相关内容

自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
43+阅读 · 2022年6月30日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
26+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月19日
VIP会员
相关VIP内容
自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
43+阅读 · 2022年6月30日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
26+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员