In this paper, we want to clarify the Gibbs phenomenon when continuous and discontinuous finite elements are used to approximate discontinuous or nearly discontinuous PDE solutions from the approximation point of view. For a simple step function, we explicitly compute its continuous and discontinuous piecewise constant or linear projections on discontinuity matched or non-matched meshes. For the simple discontinuity-aligned mesh case, piecewise discontinuous approximations are always good. For the general non-matched case, we explain that the piecewise discontinuous constant approximation combined with adaptive mesh refinements is a good choice to achieve accuracy without overshoots. For discontinuous piecewise linear approximations, non-trivial overshoots will be observed unless the mesh is matched with discontinuity. For continuous piecewise linear approximations, the computation is based on a "far-away assumption", and non-trivial overshoots will always be observed under regular meshes. We calculate the explicit overshoot values for several typical cases. Numerical tests are conducted for a singularly-perturbed reaction-diffusion equation and linear hyperbolic equations to verify our findings in the paper. Also, we discuss the $L^1$-minimization-based methods and do not recommend such methods due to their similar behavior to $L^2$-based methods and more complicated implementations.
翻译:在本文中, 我们想要澄清 Gibbs 现象, 当连续和不连续的有限元素被用近似点的近似点来近似不连续或几乎不连续的 PDE 解决方案时, 我们想要澄清 Gibs 现象。 对于一个简单的步骤函数, 我们明确计算其连续和不连续的、 连续的、 连续的、 连续的、 连续的、 连续的、 连续的、 或线性的关于不连续的、 匹配或不相匹配的线性线性。 对于简单的不连续的、 连续的、 连续的、 连续的、 连续的、 连续的、 连续的、 连续的、 连续的、 连续的、 连续的、 连续的、 连续的、 连续的、 连续的、 连续的、 不连续的、 连续的、 连续的、 连续的、 连续的、 不连续的近似于 。 对于一般的非匹配的情况, 我们计算出一些典型案例的明显超标值值值值值值值。 微量的测试是为了在不重复的反射线性反射和直线的公式中进行精确的测试, 。 对于一个单一的反射平比重的反射和直线的超比重的公式的公式的公式的公式的公式, 我们讨论着的公式, 而不是在纸面的公式, 我们讨论在纸面的、 。