The increasing prevalence of neural networks (NNs) in safety-critical applications calls for methods to certify safe behavior. This paper presents a backward reachability approach for safety verification of neural feedback loops (NFLs), i.e., closed-loop systems with NN control policies. While recent works have focused on forward reachability as a strategy for safety certification of NFLs, backward reachability offers advantages over the forward strategy, particularly in obstacle avoidance scenarios. Prior works have developed techniques for backward reachability analysis for systems without NNs, but the presence of NNs in the feedback loop presents a unique set of problems due to the nonlinearities in their activation functions and because NN models are generally not invertible. To overcome these challenges, we use existing forward NN analysis tools to efficiently find an over-approximation of the backprojection (BP) set, i.e., the set of states for which the NN control policy will drive the system to a given target set. We present frameworks for calculating BP over-approximations for both linear and nonlinear systems with control policies represented by feedforward NNs and propose computationally efficient strategies. We use numerical results from a variety of models to showcase the proposed algorithms, including a demonstration of safety certification for a 6D system.
翻译:安全关键应用中神经网络的日益普及要求采取安全行为验证方法。本文件介绍了神经反馈循环(NFLs)安全核查的后向可达性方法,即带有NN控制政策的封闭环系统。虽然最近的工作侧重于前向可达性,作为NFLs安全认证战略,但后向可达性比前向战略有优势,特别是在避免障碍的情况下。先前的工作为没有NNW的系统开发了后向可达性分析技术,但反馈循环中出现NFNs则提出了一套独特的问题,原因是其启动功能的非线性,而且由于NNNN模型一般是不可忽略的。为了克服这些挑战,我们利用现有的前向NNS分析工具,以便有效地找到对NF(BP)集的过度匹配性战略,即NNP控制政策将驱动系统达到既定目标的一组国家。我们提出了计算线性和非线性系统对BP的过度匹配性框架,因为其启动功能是非线性,而且NF模型一般是不可忽略的。为了克服这些挑战,我们使用现有的前向NP分析工具,以便从一个高效率的验证系统(我们使用的)系统使用一个数字模型的测试结果,我们提出一个有效的测试结果,包括一个数字式的测试结果。