Consider bivariate observations $(X_1,Y_1), \ldots, (X_n,Y_n) \in \mathbb{R}\times \mathbb{R}$ with unknown conditional distributions $Q_x$ of $Y$, given that $X = x$. The goal is to estimate these distributions under the sole assumption that $Q_x$ is isotonic in $x$ with respect to likelihood ratio order. If the observations are identically distributed, a related goal is to estimate the joint distribution $\mathcal{L}(X,Y)$ under the sole assumption that it is totally positive of order two in a certain sense. An algorithm is developed which estimates the unknown family of distributions $(Q_x)_x$ via empirical likelihood. The benefit of the stronger regularization imposed by likelihood ratio order over the usual stochastic order is evaluated in terms of estimation and predictive performances on simulated as well as real data.
翻译:(X_1,Y_1),\ldots,(X_n,Y_n)\ in\mathbb{R ⁇ tims\mathb{R}$@xx$=x美元,考虑到美元=x美元,考虑双变量的观察 $(X_1,Y_1),\ldots,(X_n,Y_n)\ in\mathbb{R_times\mathb{R}$,但条件分配条件不明的$_x$$_x美元,考虑到美元=x=x美元。目标是在唯一假设美元是按概率比值以美元计为等值的情况下估计这些分布。如果观测结果分布相同,相关的目标是根据单数估计联合分配的$\mathcal{L}(X,Y)$(X,在某种意义上说它完全符合第2号线的正数。正在开发一种算法,根据经验可能性估计分配的$( ⁇ x)_x$的未知的类别。根据通常的随机顺序对概率顺序进行更严格调整的可能性,根据估计的可能性,从估计和预测性性性性表现和真实数据来,将产生更强烈的效益。