We consider discrete optimization problems with interval uncertatinty of objective function coefficients. The interval uncertainty models measurements errors. A pos\-sible optimal solution is a solution that is optimal for some possible values of the coefficients. Pro\-ba\-bi\-li\-ty of a possible solution is the probability to obtain such coefficients that the solution is optimal. Similarly we define the notion of a possible approximate solution with given accuracy and probability of the solution. A possible approximate solution is an approximate solution that is obtained for some possible values of the coefficients by some fixed approximate algorithm, e.g. by the greedy algorithm. Pro\-ba\-bi\-li\-ty of a such solution is the probability to obtain such coefficients that the algorithm produces the solution as its output. We consider optimal or approximate possible solution un\-re\-pre\-sen\-ta\-ti\-ve if its probability less than some boundary value. The mean approximate solution is a possible approximate solution for midpoints of the coefficients intervals. The solution may be treated as approximate solution for exact values of the coefficients. We show that the share of individual discrete optimization problems instances with unrepresentative mean approximate solution may be wide enough for rather small values of error and the boundary value. The same is true for any other possible approximate solution: all of them may be unrepresentative.


翻译:我们考虑的是与客观函数系数的间隔不相容的离散优化问题。 间隔的不确定性模型测量误差。 间隙的不确定性模型测量错误。 可能的最佳解决方案是,对于系数的某些可能值来说,最理想的解决方案是获得这种系数的概率。 可能的解决方案Pro\-ba\- bi\- li\- ty, 可能的解决办法是获得这种系数的系数的概率, 其最佳的概率是获得这种系数作为解决办法的输出。 我们考虑的是,如果其可能性小于某些边界值,那么最理想或最接近的可能解决方案的概率是un\- re\ pre\- sen\- ta\-ti\- ve。 一种可能的近似近似解决办法, 可能是通过某种固定的近似算法, 例如贪婪的算法。 Pro\-ba\- bi\- li\- li\-ty这种解决办法是获得这种系数的某些可能值的近似解决办法的概率。 我们指出, 单个的差差差值可能具有相当的近似性解决方案。 。 任何远的差的差的差的比是其他的差的概率, 问题可能是其他的概率。 。

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员