This paper investigates the resource allocation algorithm design for wireless systems assisted by large intelligent reflecting surfaces (IRSs) with coexisting enhanced mobile broadband (eMBB) and ultra reliable low-latency communication (URLLC) users. We consider a two-time scale resource allocation scheme, whereby the base station's precoders are optimized in each mini-slot to adapt to newly arriving URLLC traffic, whereas the IRS phase shifts are reconfigured only in each time slot to avoid excessive base station-IRS signaling. To facilitate efficient resource allocation design for large IRSs, we employ a codebook-based optimization framework, where the IRS is divided into several tiles and the phase-shift elements of each tile are selected from a pre-defined codebook. The resource allocation algorithm design is formulated as an optimization problem for the maximization of the average sum data rate of the eMBB users over a time slot while guaranteeing the quality-of-service (QoS) of each URLLC user in each mini-slot. An iterative algorithm based on alternating optimization (AO) is proposed to find a high-quality suboptimal solution. As a case study, the proposed algorithm is applied in an industrial indoor environment modelled via the Quadriga channel simulator. Our simulation results show that the proposed algorithm design enables the coexistence of eMBB and URLLC users and yields large performance gains compared to three baseline schemes. Furthermore, our simulation results reveal that the proposed two-time scale resource allocation design incurs only a small performance loss compared to the case when the IRSs are optimized in each mini-slot.
翻译:本文调查无线系统的资源分配算法设计,由大型智能反射表面(IRS)与同时使用的增强移动宽带(EMBBB)和超可靠的低纬度通信(URLLC)用户共同使用。我们考虑一个两度比例资源分配办法,即基站预译器在每一个小型点优化,以适应新到达的URLC流量,而IRS阶段的转换只在每个时段进行重新配置,以避免基础站-IRS信号信号过度。为了便利大型IRS的高效资源配置设计,我们使用一个基于代码的优化框架,将IRS分为几个砖块,从一个预定义的代码中选择每张牌牌的分阶段配置元素。资源配置算法设计是一个优化问题,用于使电子MBB的用户在一个时段最大限度地增加平均总数据率,同时保证每个超级基站-IRS的用户的服务质量(QOS)。一个基于交替优化(AO)的迭代算法,用于在每张调的离子点配置度设计成本分析中找到一个高质量的模型设计成本比例,在我们的拟议工业模型模型设计中,一个比重的模型的模型分析结果。 QQA 。一个测试中,建议在高级计算中,一个测试中,一个测试中,用于我们的拟议的模型的模型的模型的模型的模型的模型的模型的模型的计算结果,用于测试的计算结果。