We introduce an enriched unfitted finite element method to solve 1D elliptic interface problems with discontinuous solutions, including those having implicit or Robin-type interface jump conditions. We present a novel approach to construct a one-parameter family of discontinuous enrichment functions by finding an optimal order interpolating function to the discontinuous solutions. In the literature, an enrichment function is usually given beforehand, not related to the construction step of an interpolation operator. Furthermore, we recover the well-known continuous enrichment function when the parameter is set to zero. To prove its efficiency, the enriched linear and quadratic elements are applied to a multi-layer wall model for drug-eluting stents in which zero-flux jump conditions and implicit concentration interface conditions are both present.
翻译:我们引入了一种浓缩不适于使用的有限元素方法,用不连续的解决方案解决1D椭圆界面问题,包括具有隐含或罗宾式界面跳跃条件的问题。我们提出了一个新颖的方法,通过找到不连续解决方案的最佳顺序间插功能,构建一个不连续浓缩功能的单参数系列。在文献中,浓缩功能通常是事先设定的,与内插操作者的建设步骤无关。此外,当参数设定为零时,我们恢复了众所周知的连续浓缩功能。为了证明其效率,浓缩线性元素和四边元素被应用到一种多层墙模型,用于药物排泄剂,其中既存在零流量跳动条件,也存在隐含的浓缩界面条件。