Proof-of-learning (PoL) proposes a model owner use machine learning training checkpoints to establish a proof of having expended the necessary compute for training. The authors of PoL forego cryptographic approaches and trade rigorous security guarantees for scalability to deep learning by being applicable to stochastic gradient descent and adaptive variants. This lack of formal analysis leaves the possibility that an attacker may be able to spoof a proof for a model they did not train. We contribute a formal analysis of why the PoL protocol cannot be formally (dis)proven to be robust against spoofing adversaries. To do so, we disentangle the two roles of proof verification in PoL: (a) efficiently determining if a proof is a valid gradient descent trajectory, and (b) establishing precedence by making it more expensive to craft a proof after training completes (i.e., spoofing). We show that efficient verification results in a tradeoff between accepting legitimate proofs and rejecting invalid proofs because deep learning necessarily involves noise. Without a precise analytical model for how this noise affects training, we cannot formally guarantee if a PoL verification algorithm is robust. Then, we demonstrate that establishing precedence robustly also reduces to an open problem in learning theory: spoofing a PoL post hoc training is akin to finding different trajectories with the same endpoint in non-convex learning. Yet, we do not rigorously know if priori knowledge of the final model weights helps discover such trajectories. We conclude that, until the aforementioned open problems are addressed, relying more heavily on cryptography is likely needed to formulate a new class of PoL protocols with formal robustness guarantees. In particular, this will help with establishing precedence. As a by-product of insights from our analysis, we also demonstrate two novel attacks against PoL.


翻译:学习的验证( POL) 提出模型所有人使用机器学习训练检查站来证明为什么POL协议无法正式( 无法证明), 从而证明已经花费了必要的计算。 PoL 加密方法的作者, 以及贸易严格的安全保障, 以便通过应用于随机梯度梯度下行和适应变体, 向深层学习扩展。 缺乏正式分析, 使得攻击者有可能为他们没有训练的模型提供证据。 我们协助正式分析为什么POL协议不能正式( 无法证明), 从而证明它已经对攻击对手进行了必要的计算。 为了做到这一点, 我们分辨了在 PoL 中进行校正校正核查的两种作用:(a) 有效地确定一个证据是否有效梯度梯度下降轨道, 并且(b) 确定在训练完成后, 更昂贵的证明一个证据。 我们证明有效的核查在接受合法模型和拒绝无效的证明之间, 因为深入的学习必然涉及噪音。 没有精确的分析模型如何影响培训, 我们无法正式地保证如果一个不精确的精确的精确的判断, 在精确的检验中, 我们无法帮助确定一个不精确的精确的精确的判断, 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
3+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月3日
Arxiv
0+阅读 · 2022年9月30日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
3+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员