We consider a potential outcomes model in which interference may be present between any two units but the extent of interference diminishes with spatial distance. The causal estimand is the global average treatment effect, which compares counterfactual outcomes when all units are treated to those when none are. We study a class of designs in which space is partitioned into clusters that are randomized into treatment and control. For each design, we estimate the treatment effect using a Horvitz-Thompson estimator that compares the average outcomes of units with all neighbors treated to units with no treated neighbors, where the neighborhood radius is of the same order as the cluster size dictated by the design. We derive the estimator's rate of convergence as a function of the design and degree of interference and use this to obtain estimator-design pairs that achieve near-optimal rates of convergence under relatively minimal assumptions on interference. We prove that the estimators are asymptotically normal and provide a variance estimator. For practical implementation of the designs, we suggest partitioning space using clustering algorithms.
翻译:我们考虑一个潜在结果模型,其中两个单元之间可能存在干扰,但干扰的程度会降低空间距离。因果估计效应是全球平均处理效果,将所有单元治疗时的反事实结果与无处理时的反事实结果进行比较。我们研究空间被分割成可随机地进入处理和控制的组群的一类设计。对于每一种设计,我们使用Horvitz-Thompson估计器来估计处理效果,该估计器将单位的平均结果与所有被处理的邻居处理的单位的平均结果相比较,没有经过处理的邻居的单位,其周围半径与设计要求的组群大小的顺序相同。我们把估计的趋同率作为设计和干扰程度的函数来计算。我们用这个方法来取得估计-指定配对,在相对最低的干扰假设下,这些配对的趋同率接近最佳。我们证明估计器是正常的,并提供差异估计器。关于设计的实际实施,我们建议使用组合算法对空间进行分割。