Bi-quadratic programming over unit spheres is a fundamental problem in quantum mechanics introduced by pioneer work of Einstein, Schr\"odinger, and others. It has been shown to be NP-hard; so it must be solve by efficient heuristic algorithms such as the block improvement method (BIM). This paper focuses on the maximization of bi-quadratic forms, which leads to a rank-one approximation problem that is equivalent to computing the M-spectral radius and its corresponding eigenvectors. Specifically, we provide a tight upper bound of the M-spectral radius for nonnegative fourth-order partially symmetric (PS) tensors, which can be considered as an approximation of the M-spectral radius. Furthermore, we showed that the proposed upper bound can be obtained more efficiently, if the nonnegative fourth-order PS-tensors is a member of certain monoid semigroups. Furthermore, as an extension of the proposed upper bound, we derive the exact solutions of the M-spectral radius and its corresponding M-eigenvectors for certain classes of fourth-order PS-tensors. Lastly, as an application of the proposed bound, we obtain a practically testable sufficient condition for nonsingular elasticity M-tensors with strong ellipticity condition. We conduct several numerical experiments to demonstrate the utility of the proposed results. The results show that: (a) our proposed method can attain a tight upper bound of the M-spectral radius with little computational burden, and (b) such tight and efficient upper bounds greatly enhance the convergence speed of the BIM-algorithm, allowing it to be applicable for large-scale problems in applications.


翻译:在单位域上双赤道编程是爱因斯坦、施尔克和其他地方的先驱性工作引进的量子力学的根本问题。 它被证明是NP- 硬( PS) 的, 因此它必须由诸如块状改进方法(BIM) 等高效的超光速算法来解决。 本文侧重于双赤道形态的最大化, 导致一个等同计算M光谱半径及其对应的导导体的一等近离子问题。 具体地说, 我们为部分对称( PS) 的非偏差四级半径半径部分对称( PS) 推进器提供了M光谱半径半径的紧紧上限, 这可以被视为M光谱半径半径半径的近似值。 此外, 我们表明,如果非偏差的四等半径PS- S- 高光度电解仪是某类的一等近端操作, 则可以更高效地将M- 递增缩的内值计算结果。 最后, 我们提出的四等的硬质实验结果将显示为: 高压的硬质的硬质的硬质的内, 我们提出的内机变变变变变变变变变的硬性机的硬性机的内, 的内变压的内变变变变变变压的机的内变压。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月5日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员