Bayesian global optimization (BGO) is an efficient surrogate-assisted technique for problems involving expensive evaluations. A parallel technique can be used to parallelly evaluate the true-expensive objective functions in one iteration to boost the execution time. An effective and straightforward approach is to design an acquisition function that can evaluate the performance of a bath of multiple solutions, instead of a single point/solution, in one iteration. This paper proposes five alternatives of \emph{Probability of Improvement} (PoI) with multiple points in a batch (q-PoI) for multi-objective Bayesian global optimization (MOBGO), taking the covariance among multiple points into account. Both exact computational formulas and the Monte Carlo approximation algorithms for all proposed q-PoIs are provided. Based on the distribution of the multiple points relevant to the Pareto-front, the position-dependent behavior of the five q-PoIs is investigated. Moreover, the five q-PoIs are compared with the other nine state-of-the-art and recently proposed batch MOBGO algorithms on twenty bio-objective benchmarks. The empirical experiments on different variety of benchmarks are conducted to demonstrate the effectiveness of two greedy q-PoIs ($\kpoi_{\mbox{best}}$ and $\kpoi_{\mbox{all}}$) on low-dimensional problems and the effectiveness of two explorative q-PoIs ($\kpoi_{\mbox{one}}$ and $\kpoi_{\mbox{worst}}$) on high-dimensional problems with difficult-to-approximate Pareto front boundaries.
翻译:Bayesian 全球优化(BGO) 是一种高效的代金辅助技术, 解决涉及昂贵评估的问题 。 一个平行技术可以用来同时在一个迭代中评估真实值目标函数, 以提升执行时间 。 一个有效和直截了当的方法是设计一个获取功能, 以在一次迭代中评估多种解决方案浴而不是单一点/ 解决方案的性能 。 本文提出了五种替代方案 \ emph{ 改进概率} (PoI), 分批( q- PoI), 分批( q- PoI), 分批( q- PoI), 分批( Q- Payesian 全球优化( MOBGO), 分数。 提供精确的计算公式和 Monte Carlo 近似算法, 用于所有提议的 q- Pareto- pato 。 根据与Pareto- q- Qois 有关多点的分布, 5 q- Q-poIls 的依位行为。 此外, 将另外五个q- pal- pal- pal- pal- pal- pal- pal- pal- pal- lex- leg- leg- leg- leg- leg- leg- bal- leg- leg- leg- salbalbalborborgalborgal 和两个 Bestal- legalbalbalblegal- bestalbor legal bal bal bal bal bal balbal balbs bessal bal bal bal bal bal bal bessal bal bal bal bal le bal bal bal bal bal bal balbalbalbalbalbalbalalbalbalalal lebalal lebal ex le le le le 和两个基准进行实验实验实验实验实验实验实验实验实验实验实验性实验性实验。