When developing a Filtered Backprojection (FBP) algorithm, considering the Radon transform (RT) as a line integral necessitates assuming that all elements of the Computed Tomography (CT) system, such as the detector cell, are dimensionless. It is generally the result of such inadequate CT modeling that analytical methods are sensitive to artifacts and noise. Then, to address this problem, several algebraic reconstruction techniques utilizing iterative models are suggested. The high computational cost of these methods restricts their application. In this paper, we propose the utilization of the Scale Space Radon Transform (SSRT), recognized for its good behavior in the scale space where, the detector width is already considered into the SSRT design and is controlled by the Gaussian kernel standard deviation. After depicting the basic properties and the inversion of SSRT, the FBP algorithm is used in two different ways to reconstruct the image from the SSRT sinogram: (1) Deconv-Rad-FBP: Deconvolve SSRT to estimate RT and apply FBP or (2) SSRT-FBP: Modify FBP such that RT spectrum used in FBP is replaced by SSRT, expressed in the frequency domain. Comparison of image reconstruction using SSRT and RT are performed on Shepp-Logan head and anthropomorphic abdominal phantoms by using, as quality measures, PSNR and SSIM. The first findings show that the SSRT-based image reconstruction quality is better than the one based on RT where, the SSRT-FBP method reveals to be the most accurate, especially, when the number of projections is reduced, making it more appropriate for applications requiring low-dose radiation such as medical X-ray CT. While SSRT-FBP and RT-FBP algorithm have utmost the same execution time, the former is much faster than Deconv-Rad-FBP. Furthermore, the experiments show that the SSRT-FBP method is more robust to CT data Poisson-Gaussian noise.


翻译:当开发过滤的回射算法( FBP) 时, 将雷达变换( RT) 作为一种线性内涵, 假设光学解剖系统的所有元素, 如检测器细胞, 是无维的。 一般来说, 分析方法模型不完善, 分析方法对工艺品和噪音十分敏感。 然后, 提出利用迭代模型来重建图像的几种代数重建技术。 这些方法的高计算成本限制了它们的应用。 在本文中, 我们提议使用空间变换( SSRTRT) 的规模变换( SSRT ), 因为它在规模空间中表现良好, 已经将准确的检测器宽度纳入到 SSRT 设计中, 并且由高科技变异器标准偏差控制。 在描述基本特性和变异形后, FBPBP 算法以两种不同的方式重建图像:(1) 标准- RDFDF: 低调- RDFDF: 降低SVT 来估算RT, 并应用FBBT 或(2) 显示的FT: 第一次修改FBBBT 质量变换方法, 进行更精确变异变变变换, 系统变换系统变换的系统变换, 显示一个系统变换的系统变换的系统变换的系统变换法, 方法显示一个频率显示一个方法, 方法显示一个更变换的RFFFDFDFT 格式, 格式, 格式, 方法显示为最变换的RFT 格式, 格式, 方法显示为FTFT 格式, 方法显示的变换变换变换式的变换式方法, 方法显示的变换到FTFTFTFTFDFDFDFT。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
17+阅读 · 2021年1月21日
Adaptive Synthetic Characters for Military Training
Arxiv
46+阅读 · 2021年1月6日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
112+阅读 · 2020年2月5日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员