This paper develops mfEGRA, a multifidelity active learning method using data-driven adaptively refined surrogates for failure boundary location in reliability analysis. This work addresses the issue of prohibitive cost of reliability analysis using Monte Carlo sampling for expensive-to-evaluate high-fidelity models by using cheaper-to-evaluate approximations of the high-fidelity model. The method builds on the Efficient Global Reliability Analysis (EGRA) method, which is a surrogate-based method that uses adaptive sampling for refining Gaussian process surrogates for failure boundary location using a single-fidelity model. Our method introduces a two-stage adaptive sampling criterion that uses a multifidelity Gaussian process surrogate to leverage multiple information sources with different fidelities. The method combines expected feasibility criterion from EGRA with one-step lookahead information gain to refine the surrogate around the failure boundary. The computational savings from mfEGRA depends on the discrepancy between the different models, and the relative cost of evaluating the different models as compared to the high-fidelity model. We show that accurate estimation of reliability using mfEGRA leads to computational savings of $\sim$46% for an analytic multimodal test problem and 24% for a three-dimensional acoustic horn problem, when compared to single-fidelity EGRA. We also show the effect of using a priori drawn Monte Carlo samples in the implementation for the acoustic horn problem, where mfEGRA leads to computational savings of 45% for the three-dimensional case and 48% for a rarer event four-dimensional case as compared to single-fidelity EGRA.


翻译:本文开发了mfEGRA, 这是一种基于多种纤维的积极学习方法,它使用由数据驱动的适应性改良代谢方法, 用于在可靠性分析中测量故障边界位置。 这项工作解决了可靠性分析成本过高的问题, 使用蒙特卡洛抽样, 利用高纤维模型的昂贵到评估高纤维模型, 利用高纤维模型的廉价到评估近似值。 该方法以高效的全球可靠性分析(EGRA)方法为基础, 这是一种基于替代方法, 使用适应性的抽样方法, 利用单一纤维模型, 改进Gausian进程代谢失败边界位置的代谢。 我们的方法采用了两阶段的适应性取样标准, 利用多纤维高产品代谢模型, 利用多种信息来源, 以不同忠实的方式评估高纤维模型。 这种方法将EGRA的预期可行性标准与一脚本信息汇集在一起, 完善全球可靠性分析(EGRA) 。 mfEGRA 的计算节余取决于不同模型之间的差异, 以及评估不同模型与高纤维模型之间的相对成本。 我们用一种准确的可靠程度估算了 EGRA 4, 用于测试案件 IMFA 。

0
下载
关闭预览

相关内容

LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
CVPR 2019 | 重磅!34篇 CVPR2019 论文实现代码
AI研习社
11+阅读 · 2019年6月21日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文浅尝 | Reinforcement Learning for Relation Classification
开放知识图谱
9+阅读 · 2017年12月10日
Arxiv
0+阅读 · 2021年11月12日
Arxiv
7+阅读 · 2021年11月11日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
CVPR 2019 | 重磅!34篇 CVPR2019 论文实现代码
AI研习社
11+阅读 · 2019年6月21日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文浅尝 | Reinforcement Learning for Relation Classification
开放知识图谱
9+阅读 · 2017年12月10日
Top
微信扫码咨询专知VIP会员