Secure model aggregation across many users is a key component of federated learning systems. The state-of-the-art protocols for secure model aggregation, which are based on additive masking, require all users to quantize their model updates to the same level of quantization. This severely degrades their performance due to lack of adaptation to available bandwidth at different users. We propose three schemes that allow secure model aggregation while using heterogeneous quantization. This enables the users to adjust their quantization proportional to their available bandwidth, which can provide a substantially better trade-off between the accuracy of training and the communication time. The proposed schemes are based on a grouping strategy by partitioning the network into groups, and partitioning the local model updates of users into segments. Instead of applying aggregation protocol to the entire local model update vector, it is applied on segments with specific coordination between users. We theoretically evaluate the quantization error for our schemes, and also demonstrate how our schemes can be utilized to overcome Byzantine users.


翻译:许多用户的安全模式汇总是联合学习系统的一个关键组成部分。基于添加面罩的、最先进的安全模式汇总协议要求所有用户将其模型更新量量化到同等的量化水平。由于不同用户对可用带宽缺乏适应性,这严重降低了他们的性能。我们建议了三种方案,允许安全模式汇总,同时使用不同量化。这使得用户能够调整其量化比例,使其与可用带宽成正比,这可以大大改善培训准确性和通信时间之间的权衡。拟议计划的基础是分组战略,将网络分成若干组,将本地用户的模型更新分成若干部分。它不是对整个本地模型更新矢量应用汇总协议,而是在用户之间进行具体协调的部分应用。我们从理论上评估了我们的计划的量化错误,还展示了如何利用我们的计划来克服Byzantine用户。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
3+阅读 · 2020年5月1日
Federated Learning with Personalization Layers
Arxiv
4+阅读 · 2019年12月2日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员