This paper investigates the problem of online statistical inference of model parameters in stochastic optimization problems via the Kiefer-Wolfowitz algorithm with random search directions. We first present the asymptotic distribution for the Polyak-Ruppert-averaging type Kiefer-Wolfowitz (AKW) estimators, whose asymptotic covariance matrices depend on the function-value query complexity and the distribution of search directions. The distributional result reflects the trade-off between statistical efficiency and function query complexity. We further analyze the choices of random search directions to minimize the asymptotic covariance matrix, and conclude that the optimal search direction depends on the optimality criteria with respect to different summary statistics of the Fisher information matrix. Based on the asymptotic distribution result, we conduct online statistical inference by providing two construction procedures of valid confidence intervals. We provide numerical experiments verifying our theoretical results with the practical effectiveness of the procedures.
翻译:本文通过随机搜索方向的Kiefer-Wolfowitz算法,调查在随机搜索方向的随机优化问题中模型参数的在线统计推断问题。 我们首先介绍Polyak-Ruppert-Vavering type Kiefer-Wolfowitz (AKW) 测量员的无症状分布,其无症状共变量矩阵取决于功能-价值查询的复杂性和搜索方向的分布。 分布结果反映了统计效率和功能查询复杂性之间的平衡。 我们进一步分析随机搜索方向的选择,以尽量减少无症状共变量矩阵,并得出结论,最佳搜索方向取决于渔业信息矩阵不同汇总统计的最佳性标准。 根据无症状分布结果,我们通过提供两个有效信任间隔的构建程序进行在线统计推断。 我们提供数字实验,以核实我们的理论结果和程序的实际有效性。