In this paper we introduce a covariance framework for the analysis of EEG and MEG data that takes into account observed temporal stationarity on small time scales and trial-to-trial variations. We formulate a model for the covariance matrix, which is a Kronecker product of three components that correspond to space, time and epochs/trials, and consider maximum likelihood estimation of the unknown parameter values. An iterative algorithm that finds approximations of the maximum likelihood estimates is proposed. We perform a simulation study to assess the performance of the estimator and investigate the influence of different assumptions about the covariance factors on the estimated covariance matrix and on its components. Apart from that, we illustrate our method on real EEG and MEG data sets. The proposed covariance model is applicable in a variety of cases where spontaneous EEG or MEG acts as source of noise and realistic noise covariance estimates are needed for accurate dipole localization, such as in evoked activity studies, or where the properties of spontaneous EEG or MEG are themselves the topic of interest, such as in combined EEG/fMRI experiments in which the correlation between EEG and fMRI signals is investigated.


翻译:在本文中,我们引入了一个分析环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、气候、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、气候、环境、环境、环境、环境、环境、环境、环境、气候、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、环境、

3
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
61+阅读 · 2020年3月4日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Revisiting CycleGAN for semi-supervised segmentation
Arxiv
3+阅读 · 2019年8月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员