The problem of spike encoding of sound consists in transforming a sound waveform into spikes. It is of interest in many domains, including the development of audio-based spiking neural networks, where it is the first and most crucial stage of processing. Many algorithms have been proposed to perform spike encoding of sound. However, a systematic approach to quantitatively evaluate their performance is currently lacking. We propose the use of an information-theoretic framework to solve this problem. Specifically, we evaluate the coding efficiency of four spike encoding algorithms on two coding tasks that consist of coding the fundamental characteristics of sound: frequency and amplitude. The algorithms investigated are: Independent Spike Coding, Send-on-Delta coding, Ben's Spiker Algorithm, and Leaky Integrate-and-Fire coding. Using the tools of information theory, we estimate the information that the spikes carry on relevant aspects of an input stimulus. We find disparities in the coding efficiencies of the algorithms, where Leaky Integrate-and-Fire coding performs best. The information-theoretic analysis of their performance on these coding tasks provides insight on the encoding of richer and more complex sound stimuli.
翻译:声音加注编码的问题在于将声音波形转换成螺旋钉的问题。 它在许多领域引起人们的兴趣, 包括开发基于声音的螺旋神经网络, 这是处理的第一个和最关键的阶段。 许多算法已经提出要对声音进行加注编码。 但是, 目前缺乏一种系统化的方法来对声音的性能进行定量评估。 我们提议使用一种信息理论框架来解决这个问题。 具体地说, 我们评估了两种编码任务中四个加注编码算法的编码效率, 包括调音和振幅的基本特性的编码。 所调查的算法是: 独立的 Spik Coding、 发送到 Delta 编码、 Ben's Spickr Algorithm 和 Leaky 集成- Fire 编码。 我们使用信息理论工具来估计加注在输入刺激的有关方面所传递的信息。 我们发现两种算法的编码效率存在差异, 即Leaky 集集成和 Firequeduding 进行最佳的计算。