Although the population size is an important parameter in evolutionary multi-objective optimization (EMO), little is known about its influence on preference-based EMO (PBEMO). The effectiveness of an unbounded external archive (UA) in PBEMO is also poorly understood, where the UA maintains all non-dominated solutions found so far. In addition, existing methods for postprocessing the UA cannot handle the decision maker's preference information. In this context, first, this paper proposes a preference-based postprocessing method for selecting representative solutions from the UA. Then, we investigate the influence of the UA and population size on the performance of PBEMO algorithms. Our results show that the performance of PBEMO algorithms (e.g., R-NSGA-II) can be significantly improved by using the UA and the proposed method. We demonstrate that a smaller population size than commonly used is effective in most PBEMO algorithms for a small budget of function evaluations, even for many objectives. We found that the size of the region of interest is a less important factor in selecting the population size of the PBEMO algorithms on real-world problems.
翻译:----
使用参考点的基于偏好的进化多目标优化中无界外部档案和种群规模的探讨
研究摘要:
尽管种群规模在进化多目标优化 (EMO) 中是一个重要参数,但对基于偏好的 EMO (PBEMO) 中其影响的了解却很少。PBEMO 中无界外部档案 (UA) 的效果也很不好理解,UA 维护到目前为止发现的所有非支配解。此外,现有的用于后处理 UA 的方法无法处理决策者的偏好信息。在这种情况下,本文首先提出了一种基于偏好的后处理方法,以从 UA 中选择代表性解。然后,我们调查了 UA 和种群规模对 PBEMO 算法性能 的影响。我们的结果表明,使用 UA 和提出的方法可以显着提高 PBEMO 算法(例如 R-NSGA-II)的性能。我们证明了,在小的函数评估预算下,大多数 PBEMO 算法使用比通常使用的种群规模更小的种群规模是有效的,即使对于许多目标也是如此。我们发现,在选择 PBEMO 算法的种群规模时,感兴趣区域大小是较不重要的因素,在真实问题上也是如此。