VIP内容

本书是英国剑桥大学卡文迪许实验室的著名学者David J.C.MacKay博士总结多年教学经验和科研成果,于2003年推出的一部力作。本书作者不仅透彻地论述了传统信息论的内容和最新编码算法,而且以高度的学科驾驭能力,匠心独具地在一个统一框架下讨论了贝叶斯数据建模、蒙特卡罗方法、聚类算法、神经网络等属于机器学习和推理领域的主题,从而很好地将诸多学科的技术内涵融会贯通。本书注重理论与实际的结合,内容组织科学严谨,反映了多门学科的内在联系和发展趋势。同时,本书还包含了丰富的例题和近400道习题(其中许多习题还配有详细的解答),便于教学或自学,适合作为信息科学与技术相关专业高年级本科生和研究生教材,对相关专业技术人员也不失为一本有益的参考书。

成为VIP会员查看完整内容
0
51

最新论文

Algorithmic Information Theory has inspired intractable constructions of general intelligence (AGI), and undiscovered tractable approximations are likely feasible. Reinforcement Learning (RL), the dominant paradigm by which an agent might learn to solve arbitrary solvable problems, gives an agent a dangerous incentive: to gain arbitrary "power" in order to intervene in the provision of their own reward. We review the arguments that generally intelligent algorithmic-information-theoretic reinforcement learners such as Hutter's (2005) AIXI would seek arbitrary power, including over us. Then, using an information-theoretic exploration schedule, and a setup inspired by causal influence theory, we present a variant of AIXI which learns to not seek arbitrary power; we call it "unambitious". We show that our agent learns to accrue reward at least as well as a human mentor, while relying on that mentor with diminishing probability. And given a formal assumption that we probe empirically, we show that eventually, the agent's world-model incorporates the following true fact: intervening in the "outside world" will have no effect on reward acquisition; hence, it has no incentive to shape the outside world.

0
0
下载
预览
Top