An information-theoretic estimator is proposed to assess the global identifiability of statistical models with practical consideration. The framework is formulated in a Bayesian statistical setting which is the foundation for parameter estimation under aleatoric and epistemic uncertainty. No assumptions are made about the structure of the statistical model or the prior distribution while constructing the estimator. The estimator has the following notable advantages: first, no controlled experiment or data is required to conduct the practical identifiability analysis; second, different forms of uncertainties, such as model form, parameter, or measurement can be taken into account; third, the identifiability analysis is global, rather than being dependent on a realization of parameters. If an individual parameter has low identifiability, it can belong to an identifiable subset such that parameters within the subset have a functional relationship and thus have a combined effect on the statistical model. The practical identifiability framework is extended to highlight the dependencies between parameter pairs that emerge a posteriori to find identifiable parameter subsets. Examining the practical identifiability of an individual parameter along with its dependencies with other parameters is informative for an estimation-centric parameterization and model selection. The applicability of the proposed approach is demonstrated using a linear Gaussian model and a non-linear methane-air reduced kinetics model.
翻译:本文提出了一种信息熵估计器,用于实际考虑的情况下评估统计模型的全局辨识性。该框架在贝叶斯统计设置中形成,这是估计似然和认知不确定性下的参数估计的基础。在构建估计器时,不假设统计模型或先验分布的结构。该估计器具有以下明显优点:首先,不需要控制实验或数据来进行实际辨识性分析;其次,可以考虑不同形式的不确定性,如模型形式、参数或测量;第三,辨识性分析是全局的,而不是依赖于参数的实现。如果某个单独的参数具有低辨识性,则可以属于可辨识性子集,这样子集中的参数具有功能关系,因此对统计模型具有组合效应。该实际辨识性框架被扩展,以突出事后出现的参数对之间的依赖关系,以查找可辨识子集。同时检查一个单独参数的实际辨识性以及其与其他参数的依赖关系对于估计中心化参数化和模型选择具有信息价值。所提出的方法的适用性通过使用线性高斯模型和非线性减少甲烷气体动力学模型进行演示。