We study the problem of verification and synthesis of robust control barrier functions (CBF) for control-affine polynomial systems with bounded additive uncertainty and convex polynomial constraints on the control. We first formulate robust CBF verification and synthesis as multilevel polynomial optimization problems (POP), where verification optimizes -- in three levels -- the uncertainty, control, and state, while synthesis additionally optimizes the parameter of a chosen parametric CBF candidate. We then show that, by invoking the KKT conditions of the inner optimizations over uncertainty and control, the verification problem can be simplified as a single-level POP and the synthesis problem reduces to a min-max POP. This reduction leads to multilevel semidefinite relaxations. For the verification problem, we apply Lasserre's hierarchy of moment relaxations. For the synthesis problem, we draw connections to existing relaxation techniques for robust min-max POP, which first use sum-of-squares programming to find increasingly tight polynomial lower bounds to the unknown value function of the verification POP, and then call Lasserre's hierarchy again to maximize the lower bounds. Both semidefinite relaxations guarantee asymptotic global convergence to optimality. We provide an in-depth study of our framework on the controlled Van der Pol Oscillator, both with and without additive uncertainty.
翻译:鲁棒控制屏障功能的验证与综合:多级多项式优化和半正定松弛
翻译后的摘要:
本文研究具有有界加性不确定性和控制条件的凸多项式约束的控制仿射多项式系统的鲁棒控制屏障函数(Control Barrier Function,CBF)的验证和综合问题。我们首先将鲁棒CBF验证和综合问题制定为多级多项式优化问题(POP),其中验证在三个级别上优化不确定性、控制和状态,而综合则另外优化了选择的参数化CBF候选器的参数。然后我们证明,通过调用对不确定性和控制的内部优化的KKT条件,验证问题可以简化为单级POP,而综合问题则可以归纳为 min-max POP。这种简化导致了多级半正定松弛。对于验证问题,我们应用 Lasserre 的矩阵层次松弛。对于综合问题,我们将其与现有的鲁棒 min-max POP 松弛技术联系起来,它首先使用sum-of-squares规划来找到对验证POP的未知值函数的越来越紧的多项式下界,然后再调用Lasserre的矩阵层次来最大化这些下界. 两种半正定松弛都能保证渐进全局收敛到最优解。我们针对 Van der Pol 振荡器的控制问题进行了深入的研究,包括有和无加性不确定性的情况。