This paper investigates the problem of efficient constrained global optimization of composite functions (hybrid models) whose input is an expensive black-box function with vector-valued outputs and noisy observations, which often arises in real-world science, engineering, manufacturing, and control applications. We propose a novel algorithm, Constrained Upper Quantile Bound (CUQB), to solve such problems that directly exploits the composite structure of the objective and constraint functions that we show leads substantially improved sampling efficiency. CUQB is conceptually simple and avoids the constraint approximations used by previous methods. Although the CUQB acquisition function is not available in closed form, we propose a novel differentiable stochastic approximation that enables it to be efficiently maximized. We further derive bounds on the cumulative regret and constraint violation. Since these bounds depend sublinearly on the number of iterations under some regularity assumptions, we establish explicit bounds on the convergence rate to the optimal solution of the original constrained problem. In contrast to existing methods, CUQB further incorporates a simple infeasibility detection scheme, which we prove triggers in a finite number of iterations (with high probability) when the original problem is infeasible. Numerical experiments on several test problems, including environmental model calibration and real-time reactor optimization, show that CUQB significantly outperforms traditional Bayesian optimization in both constrained and unconstrained cases. Furthermore, compared to other state-of-the-art methods that exploit composite structure, CUQB achieves competitive empirical performance while also providing substantially improved theoretical guarantees.
翻译:暂无翻译