Uncertainty estimation is crucial in safety-critical settings such as automated driving as it provides valuable information for several downstream tasks including high-level decision-making and path planning. In this work, we propose EvCenterNet, a novel uncertainty-aware 2D object detection framework utilizing evidential learning to directly estimate both classification and regression uncertainties. To employ evidential learning for object detection, we devise a combination of evidential and focal loss functions for the sparse heatmap inputs. We introduce class-balanced weighting for regression and heatmap prediction to tackle the class imbalance encountered by evidential learning. Moreover, we propose a learning scheme to actively utilize the predicted heatmap uncertainties to improve the detection performance by focusing on the most uncertain points. We train our model on the KITTI dataset and evaluate it on challenging out-of-distribution datasets including BDD100K and nuImages. Our experiments demonstrate that our approach improves the precision and minimizes the execution time loss in relation to the base model.
翻译:在安全关键环境下,例如自动驾驶为包括高层决策和路径规划在内的若干下游任务提供了宝贵信息,因此,不确定性估计至关重要。在这项工作中,我们提议EvCenterNet,这是一个新的具有不确定性的2D天体探测框架,利用证据学习直接估计分类和回归不确定性。为了利用证据学习来探测物体,我们设计了稀疏热映射输入的证据和焦点损失功能组合。我们引入了回归和热映射预测的分类平衡权重,以解决证据学习中遇到的阶级不平衡问题。此外,我们提议了一个学习计划,积极利用预测的热映不确定性,以最不确定的点为重点来改进探测性。我们关于KITTI数据集的模型,并评价其挑战性分布外数据集,包括BDD100K和nuImags。我们的实验表明,我们的方法提高了基准模型的精确度,并尽量减少执行时间损失。</s>