Automatic classification of aquatic microorganisms is based on the morphological features extracted from individual images. The current works on their classification do not consider the inter-class similarity and intra-class variance that causes misclassification. We are particularly interested in the case where variance within a class occurs due to discrete visual changes in microscopic images. In this paper, we propose to account for it by partitioning the classes with high variance based on the visual features. Our algorithm automatically decides the optimal number of sub-classes to be created and consider each of them as a separate class for training. This way, the network learns finer-grained visual features. Our experiments on two databases of freshwater benthic diatoms and marine plankton show that our method can outperform the state-of-the-art approaches for classification of these aquatic microorganisms.
翻译:水生微生物的自动分类是基于从单个图像中提取的形态特征。目前关于这些微生物的分类工作不考虑导致分类错误的类别间相似性和类别内差异。我们特别感兴趣的是,一个类别内的差异是由于显微图象的离散视觉变化而出现的。在本文中,我们提议根据视觉特征对不同类别进行分隔,以差异很大的方式予以说明。我们的算法自动决定所要创建的子类别的最佳数量,并将其中每一个类别视为单独的培训类别。这样,网络就学习细细微的视觉特征。我们在两个淡水底栖地对流和海洋浮游生物数据库的实验表明,我们的方法可以超越对这些水生微生物进行分类的最先进的方法。