A graph is well-covered if all its maximal independent sets have the same cardinality. This well studied concept was introduced by Plummer in 1970 and naturally generalizes to the weighted case. Given a graph $G$, a real-valued vertex weight function $w$ is said to be a well-covered weighting of $G$ if all its maximal independent sets are of the same weight. The set of all well-covered weightings of a graph $G$ forms a vector space over the field of real numbers, called the well-covered vector space of $G$. Since the problem of recognizing well-covered graphs is $\mathsf{co}$-$\mathsf{NP}$-complete, the problem of computing the well-covered vector space of a given graph is $\mathsf{co}$-$\mathsf{NP}$-hard. Levit and Tankus showed in 2015 that the problem admits a polynomial-time algorithm in the class of claw-free graph. In this paper, we give two general reductions for the problem, one based on anti-neighborhoods and one based on modular decomposition, combined with Gaussian elimination. Building on these results, we develop a polynomial-time algorithm for computing the well-covered vector space of a given fork-free graph, generalizing the result of Levit and Tankus. Our approach implies that well-covered fork-free graphs can be recognized in polynomial time and also generalizes some known results on cographs.
翻译:如果其所有最大独立数据集都具有相同的基点, 图形将覆盖范围很广。 这个经过周密研究的概念是由1970年普拉姆(Plummer) 引入的, 并且自然地对加权案例进行了概括化。 如果一个Gog $G$, 一个真正估价的顶端重量函数 $w$ 可以说是一个覆盖很周全的加权 $G$, 如果它的所有最大独立数据集都具有相同的重量。 一个图的所有覆盖得周全的加权 $G$ 构成一个真实数字字段的矢量空间, 叫做周密覆盖的矢量空间 $G$。 由于确认覆盖得周全的图表是 $\ mathsf{co} $\ gmathsf{NP} $- 完整的问题, 如果所有最大独立数据集都是相同重量的。 2015年, 图表中所有覆盖得周全覆盖的 $G$G$G$的加权加权加权量空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间, 叫做覆盖的矢量度矢量的矢量计算法 。 在这张纸面图上, 我们的平级平级平级平级平级平级平级平级平级平级平级平级平级平级平级平级平级平平平平平平平平平平平平平平平平平平平平平平平平,, 使一个平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平的平的平的平。