Hyperdimensional computing (HDC) is a biologically-inspired framework which represents symbols with high-dimensional vectors, and uses vector operations to manipulate them. The ensemble of a particular vector space and a prescribed set of vector operations (including one addition-like for "bundling" and one outer-product-like for "binding") form a *vector symbolic architecture* (VSA). While VSAs have been employed in numerous applications and have been studied empirically, many theoretical questions about VSAs remain open. We analyze the *representation capacities* of four common VSAs: MAP-I, MAP-B, and two VSAs based on sparse binary vectors. "Representation capacity' here refers to bounds on the dimensions of the VSA vectors required to perform certain symbolic tasks, such as testing for set membership $i \in S$ and estimating set intersection sizes $|X \cap Y|$ for two sets of symbols $X$ and $Y$, to a given degree of accuracy. We also analyze the ability of a novel variant of a Hopfield network (a simple model of associative memory) to perform some of the same tasks that are typically asked of VSAs. In addition to providing new bounds on VSA capacities, our analyses establish and leverage connections between VSAs, "sketching" (dimensionality reduction) algorithms, and Bloom filters.
翻译:超超度计算( HDC) 是一个生物启发性框架, 它代表高维矢量的符号, 并使用矢量操作来操纵它们。 特定矢量空间的组合和一套规定的矢量操作( 包括“ 组合” 的附加功能和“ 约束” 的外产品) 构成一个 * 矢量符号架构* (VSA) 。 虽然VSA 在许多应用中被使用过, 并经过经验研究, 有关 VSA 的许多理论问题仍然开放。 我们分析四个常见 VSA 的 代表能力 * : MAP- I、 MAP- B 和 以稀薄的二进量矢量矢量为基础的两个 VSA 。 “ 展示能力在这里指的是执行某些象征性任务所需的VSA 矢量矢量的尺寸的界限, 例如, 设定成员 $ $ = X = cap Y $ $ 和 $Y$ Y 的设定交点大小, 到一定的精确度 。 我们还分析了Hosfield 网络的一些新变体变体能力, VSA 的 VSA 缩缩缩缩分析。