A distributed directory is an overlay data structure on a graph $G$ that helps to access a shared token $t$. The directory supports three operations: publish, to announce the token, lookup, to read the contents of the token, and move, to get exclusive update access to the token. The directory is built upon a hierarchical partition of the graph using either weak or strong clusters. The main mechanism is the maintenance of a directory path that starts at the root node in the hierarchy and points to the current owner of the token. In the literature, there are known directory algorithms based on hierarchical graph structures, but none of them have considered failures. Given a hierarchical partition, we consider the impact of $f$ edge failures on the functionality and performance of the distributed directory. The edge failures may result in the splitting of clusters into up to $f+1$ connected components and an increase in the number of levels in the hierarchy. To recover the hierarchical partition after failures, we maintain spanning trees in the clusters and their connected components. If $G$ remains connected, we show that each level of the directory path is dilated by only a factor $f$. We also show that the performance of the publish and lookup operations is affected in the worst case by a factor $f$ with respect to the message complexity. The message complexity of the move operation increases by an $f$ factor and the number of additional layers in the hierarchy.


翻译:分布式目录是图形 $G$ 上的一个覆盖数据结构, 有助于访问共享的象征性 $t$ 。 该目录支持三个操作 : 发布, 宣布象征, 查看, 阅读象征的内容, 移动, 获得对象征的排他性更新访问 。 该目录建在图形的等级分区上, 使用弱或强的组群。 主要机制是维护从等级的根节点开始的目录路径, 并指向当前标记的所有者 。 在文献中, 有已知的目录算法, 以等级图结构为基础, 但是没有一个算错。 在等级分区中, 我们考虑美元对分配目录的功能和性能的边缘失效的影响 。 偏差可能会导致将组群分成最多为$+1 的连接组件, 并增加等级的级别数量 。 为了在失败后恢复等级分配, 我们保留在组群中及其连接的树木。 如果 $G$$ 仍然连接, 我们显示目录路径的每个级别只用一个因数 $f$ 。 我们还显示, 显示目录路径中以 $ f$ 的大小 的大小 来显示操作的动作会以 最复杂程度 。

0
下载
关闭预览

相关内容

专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年4月6日
Arxiv
0+阅读 · 2023年4月4日
Arxiv
0+阅读 · 2023年4月3日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员