Multi-task learning (MTL) has been widely applied in online advertising and recommender systems. To address the negative transfer issue, recent studies have proposed optimization methods that thoroughly focus on the gradient alignment of directions or magnitudes. However, since prior study has proven that both general and specific knowledge exist in the limited shared capacity, overemphasizing on gradient alignment may crowd out task-specific knowledge, and vice versa. In this paper, we propose a transference-driven approach CoGrad that adaptively maximizes knowledge transference via Coordinated Gradient modification. We explicitly quantify the transference as loss reduction from one task to another, and then derive an auxiliary gradient from optimizing it. We perform the optimization by incorporating this gradient into original task gradients, making the model automatically maximize inter-task transfer and minimize individual losses. Thus, CoGrad can harmonize between general and specific knowledge to boost overall performance. Besides, we introduce an efficient approximation of the Hessian matrix, making CoGrad computationally efficient and simple to implement. Both offline and online experiments verify that CoGrad significantly outperforms previous methods.


翻译:多任务学习(MTL)已被广泛应用于在线广告和推荐系统。为了解决负面转移问题,最近的研究提出了全面侧重于方向或量的梯度对齐的优化方法。然而,由于先前的研究证明,在有限的共享能力中存在一般和特定知识,过度强调梯度对齐可能会排挤特定任务的知识,反之亦然。在本文中,我们提议一种由转移驱动的方法,通过协调梯度修改,适应性地最大限度地实现知识转移。我们明确地将转移量化为从一个任务到另一个任务的损失减少,然后从优化中获取一个辅助梯度。我们通过将这一梯度纳入原始任务梯度来进行优化,使模型自动最大限度地实现跨任务转移并最大限度地减少个人损失。因此,CoGrad可以将一般知识与具体知识相协调,以提高总体绩效。此外,我们提出一个高效的海珊矩阵近似,使科格拉德的计算效率和易于执行。我们下线和在线实验都证实,科格拉德明显超越了先前的方法。</s>

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年4月29日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
Arxiv
35+阅读 · 2020年1月2日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员