In this paper we present an arbitrary-order fully discrete Stokes complex on general polyhedral meshes. We enriche the fully discrete de Rham complex with the addition of a full gradient operator defined on vector fields and fitting into the complex. We show a complete set of results on the novelties of this complex: exactness properties, uniform Poincar\'e inequalities and primal and adjoint consistency. The Stokes complex is especially well suited for problem involving Jacobian, divergence and curl, like the Stokes problem or magnetohydrodynamic systems. The framework developed here eases the design and analysis of scheme for such problems. Schemes built that way are nonconforming and benefit from the exactness of the complex. We illustrate with the design and study of a scheme to solve the Stokes equations and validate the convergence rates with various numerical tests.
翻译:在本文中,我们展示了一个关于普通多面体的完全离散的Stokes综合体。我们丰富了完全离散的De Rham综合体,在矢量场上增加了一个完全的梯度操作员,并且与综合体相适应。我们展示了这一综合体新颖性的一整套结果:精确性、统一的Poincar\'e不平等以及原始和联合一致性。斯托克斯综合体特别适合于涉及Jacobian、差异和卷曲的问题,如Stoks问题或磁力动力系统。这里制定的框架方便了这类问题的计划的设计和分析。所建造的方案不兼容,并受益于综合体的精确性。我们用一个方案的设计与研究来说明解决Stokes方程式的设计和研究,并用各种数字测试来验证汇合率。