In this work the $H^1$-stability of an L2 method on general nonuniform meshes is established for the subdiffusion equation. Under some mild constraints on the time step ratio $\rho_k$, for example $0.4573328\leq \rho_k\leq 3.5615528$ for all $k\geq 2$, a crucial bilinear form associated with the L2 fractional-derivative operator is proved to be positive semidefinite. As a consequence, the $H^1$-stability of L2 schemes can be derived for the subdiffusion equation. In the special case of graded mesh, such positive semidefiniteness holds when the grading parameter $1<r\leq 3.2016538$ and therefore the $H^1$-stability of L2 schemes holds. Based on the above analysis, a graded mesh with varying grading parameter is proposed which ensures the $H^1$-stability of L2 scheme. To the best of our knowledge, this is the first work on the $H^1$-stability of L2 method on general nonuniform meshes for subdiffusion equation.
翻译:在这项工作中,对一般非统一混合模件的L2方法为子扩散方程式设定了$H$1美元的稳定度。在对时间档比率($rho_k$)的某种轻微限制下,如果对分级比率($rho_k\leq\leq\leq\rho_k\leq 3.565528美元)有一定的限制,例如,对于所有k\geq 2美元来说,4,573328\leq\leq\rho_k\k\leq 3.565528美元,那么,与L2分级分级驱动操作器相关的一种关键的双线形式被证明是积极的半成份。因此,对于分级公式($H_1美元)的稳定性,我们最了解的是,这种正半成份的半成份值在等级参数1<r\leq 3.2016538美元,因此L2计划的稳定度为$H1美元。根据上述分析,提出了一个分级参数的分级缩图,以确保L2方案具有$H1美元的稳定度。据我们所知,这是关于1美元平方正方正方正方程式的首次关于1的半成式平方程方法的工作。