A primary challenge in metagenomics is reconstructing individual microbial genomes from the mixture of short fragments created by sequencing. Recent work leverages the sparsity of the assembly graph to find $r$-dominating sets which enable rapid approximate queries through a dominator-centric graph partition. In this paper, we consider two problems related to reducing uncertainty and improving scalability in this setting. First, we observe that nodes with multiple closest dominators necessitate arbitrary tie-breaking in the existing pipeline. As such, we propose finding $\textit{sparse}$ dominating sets which minimize this effect via a new $\textit{congestion}$ parameter. We prove minimizing congestion is NP-hard, and give an $\mathcal{O}(\sqrt{\Delta^r})$ approximation algorithm, where $\Delta$ is the max degree. To improve scalability, the graph should be partitioned into uniformly sized pieces, subject to placing vertices with a closest dominator. This leads to $\textit{balanced neighborhood partitioning}$: given an $r$-dominating set, find a partition into connected subgraphs with optimal uniformity so that each vertex is co-assigned with some closest dominator. Using variance of piece sizes to measure uniformity, we show this problem is NP-hard iff $r$ is greater than $1$. We design and analyze several algorithms, including a polynomial-time approach which is exact when $r=1$ (and heuristic otherwise). We complement our theoretical results with computational experiments on a corpus of real-world networks showing sparse dominating sets lead to more balanced neighborhood partitionings. Further, on the metagenome $\textsf{HuSB1}$, our approach maintains high query containment and similarity while reducing piece size variance.
翻译:在 medagenomics 中, 一个主要的难题是重建单个微生物基因组, 由顺序排列产生的短片混合体 。 最近的工作利用组装图的宽度来寻找 $ 美元 的缩放, 从而可以通过一个以 dominator 为中心的图形分割区快速近似查询 。 在本文中, 我们考虑两个问题, 与减少不确定性和改善此环境的可缩缩放性有关。 首先, 我们观察到, 有多个最接近的主宰器的节点需要在现有管道中任意断。 因此, 我们提议通过一个新的 $\ textit{ spress} 占定数的集成件来找到 将这种效果最小化的 $ 。 我们证明将最小化的 $ 。 当我们找到一个最接近的 美元 美元 比例, 也就是我们最接近的 美元 比例, 将 美元 的 直径的 。 当我们找到一个比 美元 最接近的 美元 的 直径 的 直径 的, 直径, 直径 的 直径, 直 直 直径 直 直 直 直 到 直 到 直 到 。 直 到 直 到 直 到 。 直 到 直 到 直 到 。 直 到 直 到 直 到 直 到 直 到 直 到 直 到 直 到 直 到 。