This work introduces a general framework for establishing the long time accuracy for approximations of Markovian dynamical systems on separable Banach spaces. Our results illuminate the role that a certain uniformity in Wasserstein contraction rates for the approximating dynamics bears on long time accuracy estimates. In particular, our approach yields weak consistency bounds on $\mathbb{R}^+$ while providing a means to sidestepping a commonly occurring situation where certain higher order moment bounds are unavailable for the approximating dynamics. Additionally, to facilitate the analytical core of our approach, we develop a refinement of certain `weak Harris theorems'. This extension expands the scope of applicability of such Wasserstein contraction estimates to a variety of interesting SPDE examples involving weaker dissipation or stronger nonlinearity than would be covered by the existing literature. As a guiding and paradigmatic example, we apply our formalism to the stochastic 2D Navier-Stokes equations and to a semi-implicit in time and spectral Galerkin in space numerical approximation of this system. In the case of a numerical approximation, we establish quantitative estimates on the approximation of invariant measures as well as prove weak consistency on $\mathbb{R}^+$. To develop these numerical analysis results, we provide a refinement of $L^2_x$ accuracy bounds in comparison to the existing literature which are results of independent interest.
翻译:这项工作引入了一个总框架, 用于确定马尔科维亚动态系统在巴纳奇空间的相分离的巴纳奇空间近似值的长期精确度。 我们的结果表明, 瓦塞斯特因近似动态的收缩率的某种统一性对于长期准确性估计具有一定的作用。 特别是, 我们的方法在美元上产生了较弱的分散性或比现有文献所覆盖的更强的非线性等引力, 而同时提供了一种方法, 来绕过一个常见的、 近似动态无法达到某种较高顺序时段界限的情况。 此外, 为了便利我们的方法的分析核心, 我们改进了某些“ 微哈里斯理论” 。 这个扩展扩大了这种瓦塞斯坦收缩估计的可适用性范围, 以一系列有趣的SPDE实例为基础, 涉及较弱的分散性或较强的非线性。 作为一个指导性和典型的例子, 我们运用了我们的形式主义 2D Navier- Stokes 方程式等方程式, 和我们系统空间数字近似度的光谱 Galerkin 。 在数字精确性精确性分析中, 我们用一个较弱的数值精确的精确性分析结果来证明。 Toalmabralalalal 的精确性分析。