A classical algorithm by Bellman and Ford from the 1950's computes shortest paths in weighted graphs on $n$ vertices and $m$ edges with possibly negative weights in $O(mn)$ time. Indeed, this algorithm is taught regularly in undergraduate Algorithms courses. In 2023, after nearly 70 years, Fineman \cite{fineman2024single} developed an $\tilde{O}(m n^{8/9})$ expected time algorithm for this problem. Huang, Jin and Quanrud improved on Fineman's startling breakthrough by providing an $\tilde{O}(m n^{4/5} )$ time algorithm. This paper builds on ideas from those results to produce an $\tilde{O}(m\sqrt{n})$ expected time algorithm. The simple observation that distances can be updated with respect to the reduced costs for a price function in linear time is key to the improvement. This almost immediately improves the previous work. To produce the final bound, this paper provides recursive versions of Fineman's structures.
翻译:暂无翻译