Learning with Noisy Labels (LNL) has attracted significant attention from the research community. Many recent LNL methods rely on the assumption that clean samples tend to have "small loss". However, this assumption always fails to generalize to some real-world cases with imbalanced subpopulations, i.e., training subpopulations varying in sample size or recognition difficulty. Therefore, recent LNL methods face the risk of misclassifying those "informative" samples (e.g., hard samples or samples in the tail subpopulations) into noisy samples, leading to poor generalization performance. To address the above issue, we propose a novel LNL method to simultaneously deal with noisy labels and imbalanced subpopulations. It first leverages sample correlation to estimate samples' clean probabilities for label correction and then utilizes corrected labels for Distributionally Robust Optimization (DRO) to further improve the robustness. Specifically, in contrast to previous works using classification loss as the selection criterion, we introduce a feature-based metric that takes the sample correlation into account for estimating samples' clean probabilities. Then, we refurbish the noisy labels using the estimated clean probabilities and the pseudo-labels from the model's predictions. With refurbished labels, we use DRO to train the model to be robust to subpopulation imbalance. Extensive experiments on a wide range of benchmarks demonstrate that our technique can consistently improve current state-of-the-art robust learning paradigms against noisy labels, especially when encountering imbalanced subpopulations.


翻译:与 Noisy Labels (LNL) 一起学习已经引起了研究界的极大关注。 许多最近的 LNL 方法都基于清洁样品往往具有“ 小损失”的假设。 但是,这一假设总是无法概括到某些人口不平衡的实际情况中, 即培训抽样大小或识别困难不同的亚人群。 因此, 最近的 LNL 方法面临着将这些“ 信息性” 样本( 如尾尾部亚群群中的硬样品或样本) 错误分类到杂乱的样本中的风险, 从而导致总体性表现不佳。 为了解决上述问题, 我们建议了一种新的 LNL 方法, 以同时处理噪音标签和不平衡亚群群群。 它首先利用样本相关性来估计抽样的清洁概率, 以便进行标签校正, 然后利用分布式机械化( DRO) 优化( DRO) 的校正标签来进一步提高稳健性。 具体地说, 与以前用分类损失作为选择标准的模型相比, 我们采用基于特征的衡量指标的衡量标准, 将样本相关性纳入到估算样本的比重的比重性比重的比重的准确的标签, 。 之后, 我们特别用机械的标签来进行更清洁的比重的比 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
12+阅读 · 2022年4月12日
Arxiv
10+阅读 · 2021年2月26日
Arxiv
11+阅读 · 2020年12月2日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员