In recent years, deep learning revolutionized machine learning and its applications, producing results comparable to human experts in several domains, including neuroscience. Each year, hundreds of scientific publications present applications of deep neural networks for biomedical data analysis. Due to the fast growth of the domain, it could be a complicated and extremely time-consuming task for worldwide researchers to have a clear perspective of the most recent and advanced software libraries. This work contributes to clarify the current situation in the domain, outlining the most useful libraries that implement and facilitate deep learning application to neuroscience, allowing scientists to identify the most suitable options for their research or clinical projects. This paper summarizes the main developments in Deep Learning and their relevance to Neuroscience; it then reviews neuroinformatic toolboxes and libraries, collected from the literature and from specific hubs of software projects oriented to neuroscience research. The selected tools are presented in tables detailing key features grouped by domain of application (e.g. data type, neuroscience area, task), model engineering (e.g. programming language, model customization) and technological aspect (e.g. interface, code source). The results show that, among a high number of available software tools, several libraries are standing out in terms of functionalities for neuroscience applications. The aggregation and discussion of this information can help the neuroscience community to devolop their research projects more efficiently and quickly, both by means of readily available tools, and by knowing which modules may be improved, connected or added.
翻译:近些年来,深入学习的机器学习及其应用革命了革命性,产生了与包括神经科学在内的若干领域人类专家相类似的成果。每年,数百份科学出版物都介绍了深神经网络应用于生物医学数据分析的深神经网络的应用情况。由于这个领域的快速发展,全世界研究人员可能要对最新的和先进的软件图书馆有一个清晰的视角,这是一项复杂而耗时的任务。这项工作有助于澄清该领域的现状,概述实施和促进对神经科学的深学习应用的最有用的图书馆,使科学家能够为其研究或临床项目确定最合适的选择方案。本文件总结了深海学习的主要发展及其与神经科学的相关性;然后审查了从文献中收集的神经信息工具箱和图书馆以及面向神经科学研究的软件项目的具体中心。选定的工具在表格中列出按应用领域(例如数据类型、神经科学领域、任务)、模型工程(例如编程语言、模式定制)和技术方面(例如:随时更新的定制、随时更新的定制)应用,以及技术方面(例如界面、代码源)。结果显示,在可迅速运用的神经科学工具中,有多种可操作的软件工具,而有多种可操作的软件工具是用于社区研究工具的。这些可迅速运用的软件工具的图书馆。