Differential Privacy (DP) provides tight upper bounds on the capabilities of optimal adversaries, but such adversaries are rarely encountered in practice. Under the hypothesis testing/membership inference interpretation of DP, we examine the Gaussian mechanism and relax the usual assumption of a Neyman-Pearson-Optimal (NPO) adversary to a Generalized Likelihood Test (GLRT) adversary. This mild relaxation leads to improved privacy guarantees, which we express in the spirit of Gaussian DP and $(\varepsilon, \delta)$-DP, including composition and sub-sampling results. We evaluate our results numerically and find them to match the theoretical upper bounds.
翻译:差异隐私(DP)为最佳对手的能力提供了严格的上限,但实际上很少遇到这种对手。根据对DP的假设测试/会员推论解释,我们检查高斯机制,放松对Neyman-Pearson-Optimal(NPO)对手的通常假设,放松对通用类似测试(GLRT)对手的通常假设。这种温和的放松导致改善隐私保障,我们用Gaussian DP和$(\varepsilon,\delta)-DP的精神表达了这一点,包括成分和子抽样结果。我们从数字上评估我们的结果,发现它们符合理论上限。