It is shown in this note that approximating the number of independent sets in a $k$-uniform linear hypergraph with maximum degree at most $\Delta$ is NP-hard if $\Delta\geq 5\cdot 2^{k-1}+1$. This confirms that for the relevant sampling and approximate counting problems, the regimes on the maximum degree where the state-of-the-art algorithms work are tight, up to some small factors. These algorithms include: the approximate sampler and randomised approximation scheme by Hermon, Sly and Zhang (2019), the perfect sampler by Qiu, Wang and Zhang (2022), and the deterministic approximation scheme by Feng, Guo, Wang, Wang and Yin (2022).
翻译:从本说明可以看出,在以美元为单位的单线式高射线式高射炮中,以最大程度、最多为$\Delta$为最大程度的独立集体的数量,如果$\Delta\geq 5\cdott 2 ⁇ k-1 ⁇ 1$,则是硬的NP,这证实,对于有关的抽样和估计计数问题,在最新算法工作最紧凑的最大限度上,有各种制度,但有某些小因素。这些算法包括:Hermon、Sly和Zhang(2019年)、Qiu、Wang和Zhang(2022年)、Feng、Guo、Wang、Wang和Yin(2022年)的大致抽样和随机近似(2022年)。