This paper describes an algorithm (thus far referred to as the "Dragonfly Algorithm") by which the subset-sum problem can be solved in $O(n^{11}\log(n))$ time complexity. The paper will first detail the generalized "product-derivative" method (and the more efficient version of this method which will be used in the algorithm) by which a pair of monic polynomials can be used to generate a system of unique monic polynomials for which each polynomial in the system will share with every other a set of roots equivalent to the intersection of the roots of the original pair; this method will then be applied on a pair of polynomials one of which, $\phi(x)$, exhibiting known roots based on the instance of the subset-sum problem and the other of which, $t(x)$, containing unknown placeholder coefficients and representing an unknown subset of the linear factors of $\phi(x)$.
翻译:本文描述了一种算法( 远称为“ 龙蝇 Algorithm ” ), 子数和问题可以用美元( ⁇ 11 ⁇ log (n) ) 时间复杂度解决。 该文件将首先详细描述通用的“ 产品衍生” 方法( 以及这一方法在算法中将使用的更有效版本 ), 通过这一算法, 一对单数多元数可以生成一种独特的单数多元数系统, 系统中的每个多元数将与其他方分享一系列根与原始对的根交汇相当的根根; 然后, 这种方法将适用于一对多数值, 其中一对, $\\phi( x), 根据子数问题的实例展示已知的根数, 另一则 $t( x), 包含未知的占位系数, 代表 $\\ (x) 的线性因数的一个未知子 。