We construct a universally Bayes consistent learning rule that satisfies differential privacy (DP). We first handle the setting of binary classification and then extend our rule to the more general setting of density estimation (with respect to the total variation metric). The existence of a universally consistent DP learner reveals a stark difference with the distribution-free PAC model. Indeed, in the latter DP learning is extremely limited: even one-dimensional linear classifiers are not privately learnable in this stringent model. Our result thus demonstrates that by allowing the learning rate to depend on the target distribution, one can circumvent the above-mentioned impossibility result and in fact, learn \emph{arbitrary} distributions by a single DP algorithm. As an application, we prove that any VC class can be privately learned in a semi-supervised setting with a near-optimal \emph{labeled} sample complexity of $\tilde{O}(d/\varepsilon)$ labeled examples (and with an unlabeled sample complexity that can depend on the target distribution).
翻译:我们构建了一个满足不同隐私(DP)的通用贝斯一致学习规则。 我们首先处理二进制分类的设置,然后将我们的规则扩大到密度估计的更一般的设置(关于总变差度指标 ) 。 一个普遍一致的DP学习者的存在暴露出与无分配的PAC模式的明显差异。 事实上,在后一个DP学习中极为有限:在这个严格的模式中,即使是单维线性线性分类者也不能私下学习。 我们的结果因此表明,通过允许学习率取决于目标分布,人们可以绕过上述不可能的结果,而事实上,通过单一DP算法学习\ emph{ a 任意} 分布。 作为一种应用,我们证明任何VC 类都可以在近乎最佳的 emph{ labeld} 样本复杂度为 $\ titilde{O} (d/\ varepsilon) 标定的示例中私下学习。