Gaussian graphical models can capture complex dependency structures among variables. For such models, Bayesian inference is attractive as it provides principled ways to incorporate prior information and to quantify uncertainty through the posterior distribution. However, posterior computation under the conjugate G-Wishart prior distribution on the precision matrix is expensive for general non-decomposable graphs. We therefore propose a new Markov chain Monte Carlo (MCMC) method named the G-Wishart weighted proposal algorithm (WWA). WWA's distinctive features include delayed acceptance MCMC, Gibbs updates for the precision matrix and an informed proposal distribution on the graph space that enables embarrassingly parallel computations. Compared to existing approaches, WWA reduces the frequency of the relatively expensive sampling from the G-Wishart distribution. This results in faster MCMC convergence, improved MCMC mixing and reduced computing time. Numerical studies on simulated and real data show that WWA provides a more efficient tool for posterior inference than competing state-of-the-art MCMC algorithms.


翻译:高斯图模型可以捕捉变量之间的复杂依赖结构。对于这种模型,贝叶斯推断十分有吸引力,因为它提供了将先验信息纳入到后验分布中以及通过后验分布量化不确定性的有原则的方法。但是,在精度矩阵上使用共轭 G-Wishart 先验分布的后验计算对于一般的不可分解图而言代价很昂贵。因此,我们提出了一种新的马尔科夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)方法,名为 G-Wishart 加权提议算法(WWA)。WWA 具有延迟接受 MCMC、精度矩阵的 Gibbs 更新以及在图空间上基于信息的提议分布等独特特征,从而使得可惜并行计算成为可能。与现有方法相比,WWA 减少了从 G-Wishart 分布进行采样的频率而增加了计算效率。这导致更快的 MCMC 收敛、更好的 MCMC 混合和更少的计算时间。在模拟数据和实际数据上的数值研究表明,WWA 是胜过现有的最新 MCMC 算法的一种更高效的后验推断工具。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
神经网络高斯过程 (Neural Network Gaussian Process)
PaperWeekly
0+阅读 · 2022年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
0+阅读 · 2023年5月22日
Arxiv
15+阅读 · 2018年4月5日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员