Decision makers often aim to learn a treatment assignment policy under a capacity constraint on the number of agents that they can treat. When agents can respond strategically to such policies, competition arises, complicating the estimation of the effect of the policy. In this paper, we study capacity-constrained treatment assignment in the presence of such interference. We consider a dynamic model where the decision maker allocates treatments at each time step and heterogeneous agents myopically best respond to the previous treatment assignment policy. When the number of agents is large but finite, we show that the threshold for receiving treatment under a given policy converges to the policy's mean-field equilibrium threshold. Based on this result, we develop a consistent estimator for the policy effect. In simulations and a semi-synthetic experiment with data from the National Education Longitudinal Study of 1988, we demonstrate that this estimator can be used for learning capacity-constrained policies in the presence of strategic behavior.
翻译:决策者往往在能力限制下,在他们可以治疗的代理商数量的限制下,学习治疗分配政策; 当代理商能够对此类政策作出战略性反应时,就会出现竞争,从而使得对政策影响的估计复杂化; 在本文中,我们研究在出现这种干扰的情况下受能力限制的治疗分配; 我们考虑一种动态模式,即决策者在每一阶段分配治疗,而各种代理商对先前的治疗分配政策作出最有想象力的反应。 当代理商数量很大但有限时,我们表明根据某项政策接受治疗的门槛与该政策的平均领域平衡门槛一致。 基于这一结果,我们为政策效果制定一个一致的估算器。在对1988年国家教育纵向研究的数据进行模拟和半综合试验时,我们证明在战略行为出现时,这一估算器可用于学习受能力限制的政策。