We study the problem of inferring heterogeneous treatment effects (HTEs) from time-to-event data in the presence of competing events. Albeit its great practical relevance, this problem has received little attention compared to its counterparts studying HTE estimation without time-to-event data or competing events. We take an outcome modeling approach to estimating HTEs, and consider how and when existing prediction models for time-to-event data can be used as plug-in estimators for potential outcomes. We then investigate whether competing events present new challenges for HTE estimation -- in addition to the standard confounding problem --, and find that, because there are multiple definitions of causal effects in this setting -- namely total, direct and separable effects --, competing events can act as an additional source of covariate shift depending on the desired treatment effect interpretation and associated estimand. We theoretically analyze and empirically illustrate when and how these challenges play a role when using generic machine learning prediction models for the estimation of HTEs.
翻译:我们研究从时间到活动的数据中得出不同处理效果(HTEs)的问题,并研究在相竞事件发生时从时间到活动的数据中得出不同处理效应的问题。尽管这个问题具有巨大的实际意义,但与在没有时间到活动的数据或相竞事件的情况下研究高TE估计的对应方相比,它很少受到重视。我们采用成果模型来估计高TE(HTEs),并考虑时间到活动数据的现有预测模型如何和何时可以用作潜在结果的插座估计器。我们接着调查相竞事件是否对高TE估计提出了新的挑战 -- -- 除了标准的混淆问题之外 -- -- 并发现,由于这一环境对因果关系有多种定义 -- -- 即总效果、直接效应和可分离效应 -- -- 相互竞争的事件可以作为共变的另一个来源,取决于对预期的治疗效果和相关估计。我们从理论上分析和实验性地说明,在使用通用机器学习预测模型来估计高TEs时,这些挑战何时和如何发挥作用。</s>